Phone: +234 815 75 50744 Email: info@softwareacademy.ng Hours: Mon-Fri: 9am – 5pm
Address: Online Training

Data Analytics

Learn Data Analytics and work with industry tools and techniques such as Excel, SQL, Power BI.  Create visualizations and apply them in real life scenario in other to use them to make decisions that are most impactful at improving business metrics.

Register Now

  
  
  
  

Using Tools such as Excel, SQL, Power BI,  for data analysis

 

What Will I Learn?

EXCEL BASICS
  1. Rows, Columns, Cells
  2. Scroll Bar
  3. Tabs
  4. Ribbon
  5. Quick Access Toolbar
  6. Formular bar
  7. Zoom
  8. Sheets
  9. Filename
COPYING & FILLING
  1. Copy
  2. Paste
  3. Paste Special
  4. Copying Cells
  5. Copying To Different Worksheets
  6. Using Fill For Quick Copying
FORMULAE
  1. Add/Subtract/Multiply/
    Divide
  2. BODMAS
EXCEL FORMATTING
  1. Excel Formatting
  2. Excel Format Colors
  3. Excel Format Fonts
  4. Excel Format Borders
  5. Excel Format Numbers
  6. Excel Format Grids
  7. Excel Format Settings
FILL SERIES
  1. Filling a series with formatting
  2. Filling a series without formatting
  3. Filling a weekdays
  4. Fill Days
ADVANCED FILL
  1. Fill Drag Numbers
  2. Fill Drag Months
  3. Fill Drag days
  4. Fill Down, Right, Left Up
  5. Flash Fill
CELL REFERRENCE
  1. Relative Reference
  2. Absolute Reference
  3. Mixed Reference
TEXT FUNCTIONS
  1. TRIM
  2. PROPER
  3. UPPER
  4. LOWER
  5. LEN
  6. LEFT
  7. RIGHT
  8. MID
  9. CONCATENATE
  10. CONCAT
  11. FIND
  12. SEARCH
  13. REPLACE
  14. SUBSTITUTE
MATH & TRIG FUNCTIONS
  1. SUMPRODUCT
  2. MROUND
  3. FLOOR
  4. CEILING
  5. MOD
  6. QUOTIENT
LOGICAL FUNCTIONS
  1. IF
  2. IFERROR
  3. NESTED IF
  4. AND
  5. OR
  6. NOT
CONDITIONAL FUNCTIONS
  1. SUM
  2. SUMIF
  3. SUMIFS
  4. AVERAGE
  5. AVERAGEIF
  6. AVERAGEIFS
  7. COUNT
  8. COUNTIF
  9. COUNTI
COUNT FUNCTIONS
  1. COUNTA
  2. COUNTBLANK
DATA SORTING & FILTERING
  1. Basic Sorting
  2. Filtering Data
  3. Advance Fitering
  4. Basic Table
  5. Advance Table
DATA VALIDATION
  1. Whole Numbers
  2. Text Length
  3. Date
  4. Drop Down List
  5. Input Messages
  6. Error Messages
  7. Stop
  8. Warning
  9. Information
  10. Circle Invalid Data
  11. Clear Validation Circles
CONDITIONAL FORMATTING
  1. Highlight Cell Rules
  2. Top Bottom Rules
  3. Data Bars
  4. Color Scales
  5. Icon Sets
  6. Clear Rules
DATE FUNCTIONS
  1. TODAY()
  2. NOW()
  3. DAY()
  4. MONTH()
  5. YEAR()
  6. DATE()
  7. EDATE()
  8. NETWORKDAYS()
  9. NETWORKDAYS.INTL()
  10. DATEDIF()
LOOKUP
  1. VLOOKUP
  2. VLOOKIP Approximate Match
  3. VLookup rules
  4. H-LOOKUP
  5. LOOKUP FUNCTION
  6. LOOKUP FULL RECORD
  7. INDEX FUNCTION
  8. MATCH FUNCTION
PIVOT TABLE
  1. Columns
  2. Rows
  3. Filters
  4. Values
  5. Pivot table slice
  6. Pivot table timeline
CHART
  1. Column Chart
  2. Pie Chart
  3. Bar Chart
  4. Line Chart
  5. XY Scatter Chart
  6. Spark Line Chart
  7. Pivot Chart

Introduction
  1. What is Database
  2. Types of Database
    • Centralised Database
    • Distributed Database
    • NoSQL Database
    • Relational Database
    • Object Oriented Database
  3. Relational Database Management System (RDBMS)
  4. Structured Query Language (SQL)
Types Of RDBMS
  1. Oracle
  2. MySQL
  3. Microsoft SQL Server
  4. PostgreSQL
  5. SQLite
  6. Microsoft Access
Data Types (String Data Types)
  1. Char(size)
  2. Varchar(size)
  3. text
  4. nchar
  5. nvarchar
  6. varbinary
  7. image
Date and Time Data Types
  1. data()
  2. datetime(fsp)
  3. timestamp(fsp)
  4. time(fsp)
  5. year()
SQL Server Keys
  1. Primary Keys Rules for defining keys
  2. What is Foreign Keys
  3. Difference between Primary Key & Foreign Key
Types of Relationship
  1. One to one relationship
  2. One to many relationship
  3. Many to many
  4. None
Constraints In SQL
  1. Not Null
  2. Unique
  3. Primary key
  4. Check
  5. Default
  6. Foreign Key
Foreign Key Referential Integrity
  1. No Action
  2. Cascade
  3. Set Null
  4. Set Default
Data Definition Language (DDL)
  1. Create
  2. Alter
  3. Drop
  4. Truncate
  5. Rename
Data Manipulation Language (DML)
  1. Insert
  2. Update
  3. Delete
  4. Merge
  5. Select
  6. Call
SQL Server Logical Operator
  1. All
  2. And
  3. Between
  4. Exists
  5. In
  6. Like
  7. Not
  8. Or
SQL Server Comparison Operator
  1. = (Equals)
  2. > (Greater than)
  3. < (Less than)
  4. >= (Greater than or Equal to)
  5. <= (Less than or equal to)
  6. <> (Not Equal to)
SQL Server String Function
  • concat()
  • left()
  • right()
  • len()
  • lower()
  • upper()
  • trim()
  • ltrim()
  • replace()
  • substring()
SQL Server Aggregate Function
  1. count()
  2. sum()
  3. avg()
  4. min()
  5. max()
Types of Join in SQL Server
  1. Inner Join
  2. Full Join
  3. Left Join
  4. Right Join
Misce
  1. Group By
  2. Having
  3. SQL Case Statement

Introduction
  1. What is Power Bi
  2. Why Power Bi
  3. How Power Bi Works
  4. Installation
Exploring Charts
  1. Column Charts
  2. Stacked Column Chart
  3. Pie Chart
  4. Donut Chart
  5. Ribbon Chart
  6. How to use include and exclude
  7. View Data and Export as CSV
Map
  1. How to create a map in Power Bi
  2. Map with Pie Chart
  3. Formatting map in Power Bi
  4. Changing Background of Maps
  5. How to create map of any country
Tables and Matrix
  1. How to format table in Power Bi
  2. Conditional Formatting in Power Bi
  3. Aggregate Function in Power Bi
  4. Creating Table Matrix in Power Bi
  5. Conditional Formatting in Table Matrix
Inserts
  1. Insert image
  2. Insert text
  3. Insert shapes
  4. Insert buttons
Navigation
  1. Web URLS
  2. Page navigation
  3. Dillthrough action
Creating Reports

Introduction
  1. What is Python?
  2. History of Python
  3. Features of Python
  4. Why use Python
Python Installation
  1. What is Anaconda
  2. What is Miniconda
  3. Difference Between Anaconda and Miniconda
  4. Virtual Environment
    • Why Virtual Environment
    • Setting a Virtual Environment
String Functions & Methods
  1. len()
  2. strip()
  3. upper()
  4. lower()
  5. capitalize()
  6. find()
  7. replace()
  8. commandline input
Python Operators
  1. Arithmetic Operators
  2. Assignment operators
  3. Comparison operators
  4. Logical operators
  5. Identity operators
  6. Membership operators
Variables
  1. Declaring Variables in Python
  2. Rule in Naming Variables
Numbers
  1. int
  2. FLoat
  3. Complex
Casting
  1. int()
  2. float()
  3. str()
Strings
  1. String Concepts
  2. Concatenation
  3. String format()
  4. The f string format
  5. Making comments
  6. Doc String
  7. String Indexing
  8. String Slicing
String Functions
  1. len()
  2. strip()
  3. upper()
  4. lower()
  5. capitalize()
  6. find()
  7. replace()
  8. commandline input
Conditional Statements
  1. if statement
  2. shorthand if statement
  3. if else statement
  4. nested if statement
  5. Shorthand if else statement
  6. if elif else
List
  1. Accessing List
  2. Changing list
  3. Counting list
  4. Adding list
  5. Removing list
  6. pop(), del, clear()
  7. List Constructor
Tuples
  1. Change Tuple value
  2. Tuple length
  3. Add items to tuple
  4. Remove items from a tuple
  5. Tuple constructor
Sets
  1. Accessing item in a set
  2. Change item in a set
  3. Adding item to a set
  4. length of a set
  5. discard(), del, clear()
  6. Set Constructor
  7. Remove item from a set
Dictionary
  1. Accessing items in a dictionary
  2. Using the .get() to get items in a dictionary
  3. Dictionary length
  4. Adding items to a dictionary
  5. Removing items from a dictionary
  6. del, popitem(), clear()
  7. dict() constructor
Loops
  1. while loops
  2. break statement
  3. for loops
  4. using .items()
  5. using .values()
  6. Python Range concept
  7. Break and continue
  8. Nested loop
  9. List Comprehension
  10. Dictionary Comprehension
Functions
  1. Function concept
  2. Creating a function
  3. Calling a function
  4. Passing parameters to a function
  5. Function with a default value
  6. Returning a value in a function
  7. Python Scope
Builtin Function
  1. abs()
  2. divmod()
  3. filter()
  4. map()
  5. max()
  6. pow()
  7. args, kwargs
  8. lambda function
Python OOP
  1. OOP Concept
  2. What is a class
  3. What is an Object
  4. What are properties
  5. What are methods
  6. How to access properties in a class
  7. How to access a methods in a class
  8. Python init method (Constructor)
  9. Difference between class and instance variable
  10. Iheritance in Python
  11. Super() in Python
Python Modules
  1. Creating a module
  2. Naming a module
  3. Using a module
  4. Builtin Python Date Module
Python Packages
  1. Creating a package
  2. Using a package
  3. Using the from keyword
Introduction to Panda

Training Session

Weekend
Time 10 a.m. - 1 p.m.
Date Oct. 26, 2024 - Sept. 7, 2024
Days Saturdays
Online Prize ₦60,000.0
Physical Prize ₦100,000.0

Address

Online Training

Curriculum

Excel: Microsoft Excel is a popular spreadsheet software used for data analysis and manipulation. It provides a range of functions and formulas for calculations, sorting and filtering capabilities, pivot tables, and charting options. Excel is known for its user-friendly interface and is widely used for basic data analysis tasks.

SQL: Structured Query Language (SQL) is a programming language used for managing and manipulating relational databases. It allows you to retrieve data from databases, perform calculations, apply filters and aggregations, and modify the structure of the data. SQL is essential for working with large datasets and performing complex queries.

Power BI: Power BI is a business intelligence tool developed by Microsoft. It allows you to connect to various data sources, import and transform data, create interactive visualizations, and share insights with others. Power BI provides a range of features like drag-and-drop functionality, data modeling capabilities, and extensive visualization options to create powerful and dynamic dashboards and reports.

Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small- and large-scale projects.

Training Requirement

  • A knowledge of mathematics and statistics are requirements for this training
  • No programing experience is required in this training, as this training can be taken by someone with no coding experience
  • We expect participant to have basic computer knowledge
  • Students are expected to come for the training with a laptop that has Wireless LAN, minimum 2Gb RAM, minimum free space on hard disk should be 50Gb minimum Dual Core CPU and USB port.
  • All students are expected to have PDF reader and Microsoft office installed in their system. Any other software needed will be provided by us.

Our Teachers

Benedict Uwazie
Founder/Teacher
Bola Sulaimon
Software Developer/Teacher
Ade Muyiwa
Data Scientist/Teacher
Busayo Ogungbure
Software Developer/Teacher

Partnering with top brands

Tryrevault
None
Alabian
Ambitech

Subscribe to our newsletter to get weekly articles on coding